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ABSTRACT

mage compression based on quantizing the image in the discrete cosine transform (DCT) domain

e
can generate blocky artifacts in the output image. It is possible to reduce these artifacts and RMS
rror by adjusting measures of block edginess and image roughness, while restricting the DCT

s
p
coefficient values to values that would have been quantized to those of the compressed image. Thi

aper presents a fast algorithm to replace our gradient search method for RMS error reduction and

K

image smoothing after adjustment of DCT coefficient amplitude.
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INTRODUCTION

he discrete cosine transform (DCT) is currently used in the MPEG and JPEG standards, and
i 4

1−3

t also appears in proposed HDTV standards. We have been developing algorithms for improving the

b
quality of images that have been compressed by partitioning the image into blocks, converting each
lock to DCT coefficients, and then quantizing these coefficients. 65,

r
a

When the inverse DCT is applied to the quantized coefficients, unpleasant blocky artifacts appea
t the block boundaries. Our goal has been to reduce the blockiness while improving reconstruction

t
accuracy. We have found a simplification of our previous methods that performs nearly as well as
hose methods and that can be computed much more rapidly and locally.

e
o

When errors are clearly visible, the blockiness of some artifacts distinguishes them from th
riginal image content, suggesting a way of reducing these artifacts. Presumably, the human viewer

k
e
identifies the artifacts by assuming the image does not have 8-pixel by 8-pixel block features. Bloc
dge variance, the sum of squared differences between adjacent block edge pixels, is one simple

s
m
measure of blockiness. A similar measure offset from the block edge provides an estimate of what thi

easure would be if the image were not blocky. In previous work, we found that using a global5, 6

d
R
algorithm to lower the block edge variance to this estimate can reduce both apparent blockiness an

MS error. Figures 1 through 5 illustrate the performance of a new version of our algorithm for 5
64x64 pixel images having a range of image content.

The basic steps of the algorithm are similar to those we have proposed before. 6

2
1) Adjust the DCT coefficients to minimize RMS error.

5,

) Compute the block edge variance of the image and the estimate of what it should be.

4
3) Lower the block edge variance to the estimate.

) Ensure that all DCT coefficients quantize to those of the compressed image.

s
f

In the rest of the paper, we make this description more precise, describe some quantitative result
or these images, and relate our work to that of others. We conclude that if the quantization is strong



-
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nough to generate significant block artifacts, this faster method gives moderate de-blocking and a
small decrease in the RMS image error.

THEORY

The DCT image transform

The discrete cosine transform (DCT) has become a standard method of image compression. 3

c
Typically the image is divided into 8×8-pixel blocks, which are each transformed into 64 DCT

1−

oefficients. The DCT coefficients I , of an N ×N block of image pixels i , are given by

u

u , v x , y

, v
x =0

N −1

y =0

N −1

x , y x , u y , vΣ ΣI = i c c , u , v = 0, N −1, (1a)

where

c = α cos(
2N
π u� ����� [2x +1]) , (1b)

and

x , u u

α =

����
2 / N , u > 0

1 / N , u = 0
. (1c)u √���������

√�	���������

DCT coefficient quantization

In JPEG quantization a coefficient is quantized by the operation1−3

u , v
u , v

u , vS = Round(
Q

I
�
�
�
�
 ) . (2)

The compressed image contains both the S for all the blocks and the Q . To retrieve the image,u , v u , v
first the DCT coefficients are restored (with their quantization error) by

Î = S Q , (3)

u

u , v u , v u , v

, v u , v e
r
where Q denotes the quantizer step size used for coefficient I . The blocks of image pixels ar
econstructed by the inverse transform:

î = Î c c , (4)
N −1

u , v x , u y , v
0

N −1

v =0
x , y

u =
Σ Σ

which for this normalization is the same as the forward transform. Our goal is to find better estimates

i
of these coefficients. A constant quantization matrix was used in the work reported here because the
ntended application was astronomical images, where the high spatial frequency information might be

D

of higher value than usual.

CT coefficient amplitude adjustment

The standard method of restoring the coefficient, using Equation 3, is equivalent to replacing each

d
coefficient by the center of the quantization interval in which the original coefficient falls. The
istribution of the non-DC coefficients for a given u , v peaks at zero and decreases monotonically.

e
e
For quantization intervals not including zero, the distribution of the original coefficients is denser at th
nd of the interval closer to zero. The mean of the distribution is the minimum mean squared error

m
reconstructor. For simplicity, we model the distribution of absolute amplitudes as exponential with

ean µ. We estimate µ by the mean of the � S  . We then replace S byu , v u , v

v

−1/µ
u ,µSu , v −1/− 0.5 + µ −

1 − e
� e������������� , if S > 0 ,
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S , if S = 0 , (5)u , v u , v

v

−1/µ
u ,µSu , v −1/+ 0.5 − µ +

1 − e
� e������������� , if S < 0 .

e
r

Figure 6 shows the RMS error improvement in dB, 20 times the logarithm to the base 10 of th
atio of the RMS difference between the original and the standard restoration to the RMS difference

5
t
between the original and the amplitude adjusted restoration, for levels of quantization ranging from
o 100 in steps of 5. The image was that of Figure 1. A constant quantization matrix was used. For

p
moderately high levels of quantization, the amplitude adjustment was not as effective. Comparing the
redicted means of the interval distribution with the actual means, we find that Equation 5

yoverestimates the desired correction when the mean of the � S � is a small fraction. This is probablu , v
.caused by the poor fit of the exponential near zero, where the actual distribution is flat

We originally developed the amplitude adjustment because we were afraid that the improvement

a
of RMS error from smoothing might just be the result of the smoothing algorithm lowering the
mplitudes of the coefficients to values closer to the mean. We have kept this step in our algorithm

A

because the improvement in RMS error has almost always been increased by including it.

measure of blockiness

Suppose i and i are the image values of two pixels that are next to each other in the same row
o

1 2
r column, but are in different blocks. We assume that the blockiness of the compressed image is

erelated to the fact that before compression, the values of i and i were usually similar, but they hav1 2
e

s
been made more different by the quantization. We define the edge variance E to be sum of th
quared differences for all such pixel pairs.

E = (i − i ) , (6)Σ 1 2
2

.The block edge variance E is our measure of image blockiness

We estimate the desired value of the edge variance by computing the same measure for the pixels

v
just inside the edge on either side and taking the average. If this estimate is less than the edge
ariance, we reduce the edge variance to this value.

A fast smoothing algorithm

Previously, we computed the block edge variance and its estimate over the entire image and then
adjusted the DCT coefficients in the direction of the gradient of block edge variance. This changes5, 6

t
e
only the edge pixels, moving each value towards the average of the its value and that of the adjacen
dge pixel. Following the method of Yang, Galatsanos, and Katsaggelos, we now average the edge7

21 d
b
pixels to obtain a desired amount of block edge variance. Adjacent edge pixels i and i are replace
y i ′ and i ′, where1 2

1 1 2 ,

i

i ′ = α i + (1 − α) i

′ = α i + (1 − α) i . (7)

d

2 2 1

cIf E is the desired block edge variance and E is the current block edge variance, the appropriate α is
given by

α =
2
1��� +

2
1��� E / E . (8)√� ���������d c

d c .Smoothing is performed only when E is less than E
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r
The resulting smoothing is very similar to that of the gradient method, yet can be fast enough for

eal-time applications. In most cases, we find that using the estimate as the target value works better
than using the block edge variance of the original image as was done by Yang, et al.7

Smoothing results

Section (d) in Figures 1 through 5 shows the RMS error improvement in dB as in Figure 6 for
e

c
the full algorithm. quantization level, the ratio of the RMS error in the smoothed picture to that of th
ompressed image. It shows that the smoothing usually improves the accuracy of image restoration.

e
The RMS error is slightly lower except when the quantization is very low and the next-to-edge
stimate is also low. Fortunately, in this case, the image will only be slightly changed and there would

f
be no apparent need for de-blocking. The improvement is better for images with smooth surfaces than
or those with rough surfaces.

Since the smoothing only changes the pixels on the block boundaries, one would expect the
t

i
success of this algorithm to be affected by the size of the the blocks. Figure 7 shows the improvemen
n RMS error as a function of quantization level for the image of Figure 1 with the block size as a

f
8
parameter with values of 5x5, 8x8, and 11x11. The RMS error reduction was best at the block size o
x8. Block sizes of 3x3 and 4x4 were also tested and gave results worse than those of 5x5.

k
s

Since the smoothing algorithm changes the edge pixels only, one can imagine that the inter-bloc
moothing reduces within-block smoothness. Previously we proposed checking the value of a with-in

y
t
block smoothness measure and lowering that measure by within block smoothing if it was increased b
he inter-block smoothing. Counting the number of times the routine was invoked, showed that

S
e
within-block smoothing is rarely necessary. It only contributes to a small improvement of the RM
rror and no noticeable visual improvement in the smoothing. We also checked to see how often the

e
quantization constraint needs to be enforced. We find that the quantization constraint is very rarely
nforced when the amplitude adjustment step is included. Out of all 5 images and levels of

f
F
quantization, there were only two instances of quantization constraint enforcement in the image o

igure 1 at quantization level 5. We now propose that when speed is important, amplitude adjustment
be done in the DCT domain, followed only by the rapid smoothing method in the image domain.

DISCUSSION

,Our problem is a special case of the optimal decoding problem discussed by Wu and Gersho 8

y
i
finding the image that minimizes the average value of a distortion function. They applied this strateg
n the derivation of an optimal additive correction to a block for each possible level of each DCT

3coefficient . Their (NLI) decoder gave a 0.7 dB improvement in mean square error on a diverse 29

image training set and about 0.5 dB improvement on new images. They report apparent reduction in

p
blockiness, but since the method was restricted to within blocks, it does not directly attack the
roblem. Our amplitude adjustment is an application of this strategy to the single DCT coefficient

d
a
amplitudes. The use of the exponential distribution model removes the dependence on amplitude an
llows the effects of coefficient indices and quantization level to be represented by a single parameter

easily estimated from the quantized data.

Our methods and results are similar to the iterative projection method of Yang, Galatsanos, and
Katsaggelos , They also use edge variance and the quantization constraint. They compute separate7

horizontal and vertical edge variances and force them to their correct values in the original image by a

q
weighted averaging of edge pixels. They iterate these two constraints in conjunction with the

uantization constraint and range constraints in both the space and DCT domains. Since the
l

i
constraints are projections onto convex sets, iterating them is guaranteed to terminate, since the origina
mage is a solution. They report a 1 dB improvement in RMS error of reconstruction and strong

l
r
apparent reduction in the blockiness for the 256×256 Lena image when the PSNR for the origina
econstruction was 27.9 dB. Our method differs from their method mainly in the addition of the
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mplitude adjustment step (which seems to make the range constraints unimportant), and the estimation
of the edge variance (which would be necessary if one begins with a JPEG compressed image).

SUMMARY

e
q

We have presented a method of estimating DCT coefficients from their quantized values and th
uantization matrix, which are both included in the JPEG standard compressed image file. This2

t
i
method of image reconstruction can reduce blockiness and RMS error in DCT quantized images. I
ncludes a simple method of DCT coefficient amplitude adjustment that reduces the RMS error itself.

i
Compared to our gradient method, the new method is about 15 times faster on a SPARC 2 when the
mage size is 512x512.

We conclude that if the quantization is strong enough to generate significant block artifacts, this
r

r
method provides moderate to good de-blocking (by our informal personal evaluation), with RMS erro
eduction of up to 2 dB. Its intrinsic regularity and scalability allow this fast smoothing algorithm to

be implemented easily on digital signal processors or in ASIC’s.
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